The International Applications of a Holistic Business Process Management Methodology

Case Studies from the Old and the New World

Markus Gappmaier, Ph.D.
L. Joseph Hopkins, MISM
Valinda Rose, MISM

Brigham Young University
Provo, Utah
March 2001
Abstract

Holistic business process management (hBPM) methods increase both quality and user acceptance of BPR projects results. The principles of the hBPM philosophy, through its supporting Participatory Process Prototyping (PPP) methodology, have seen more than 100 change projects to successful completion in Western Europe.

Holistic methods incorporate “soft” facts into business process management, such as social, organizational, and cultural factors. Until 2000, no evidence existed to establish whether the PPP methodology could be successfully applied outside the Western European cultures in which it was developed, because of differences in social and business culture from country to country. Recent applications in field studies and projects in the United States, however, demonstrate that both the hBPM philosophy and the PPP methodology have the potential for continued successful application there. Such successes further suggest that application in other cultures may be possible.
Table of Contents

Introduction: The Need for a New BPR Approach ... 4

Holistic Business Process Management .. 4
 Philosophical and Methodological Development ... 4
 Underlying Principles ... 5
 Participatory Process Prototyping ... 6

Applied hBPM: Case Studies from the Old and New Worlds .. 10
 Unisys & Britannic Asset Management .. 10
 Graduation Evaluation at BYU ... 13
 Office of Information Technology at BYU .. 15
 Process Mapping and Redesign at Cal Poly ... 16

hBPM: Catalyst for Systemic Change ... 17

Conclusions .. 18

Works Consulted ... 19
Introduction: The Need for a New BPR Approach

Business process reengineering (BPR) has continued to gain increased acceptance in business practice since the mid-1990’s, and much academic and professional attention has been focused on creating and implementing improved BPR methodologies. Even so, estimates suggest that a majority of BPR projects still fail to meet their main objectives.1

The literature is replete with documentation of the weaknesses of traditional BPR methods. Among the most commonly cited faults are: poorly defined project scope or objectives; heavy time constraints; emphasis on quantitative metrics or “hard” facts; technocentrism; failure to integrate the data collection and analysis phases with process redesign; and the failure to leverage process users’ expertise in process redesign.2 These factors, combined with the existence of increasingly complex business processes, have underlined the need for methods that seek to make systemic change and increase user acceptance.

Holistic Business Process Management

Empirical research performed by the Information Engineering Group at the Johannes Kepler University (JKU) in Linz, Austria suggests some new approaches to business process management that can improve the results of BPR projects. These methods, when tested in both academic field studies and real business settings in Western Europe, have yielded promising results. Subsequent method applications in the United States suggest that the methodologies transcend cultural boundaries and may have application in settings other than Western Europe.

Here we will briefly outline the development of the philosophies of holistic business process management (hBPM) and the methods of the Participatory Process Prototyping (PPP) methodology; recount case studies documenting the results of projects that have employed hBPM methods both in Europe and in the US; and briefly explore what these results suggest about the potential for further hBPM application in the United States and other locales.

Philosophical and Methodological Development

The hBPM philosophy that we will describe has been under development since 1989 at JKU. The philosophy and accompanying tools originated from a variety of sources, and many were not originally developed for use in business change projects, but rather stemmed from

1 See, e.g., Bill Trahant and Warner Burke’s Creating a Change Reaction (full citations at end of article).
2 See, e.g., Klein’s “The Most Fatal Reengineering Mistakes,” and Gappmaier’s Process Prototyping (full citations at end of article).
multidisciplinary research in ethnography, psychology, and organizational development. In particular, the work of Dr. Brigitte Jordan of the Michigan State University and later XEROX PARC has been applied. Her multidisciplinary knowledge helped lead to the holistic aspects of this methodology.

The methods we will describe here are, to our knowledge, the first application of Dr. Jordan’s holistic ideas to business process management. These methods have evolved into their current form as a BPR methodology through literature review, exposure to peer work at conferences, and laboratory and field studies throughout Western Europe.

Our philosophy is founded on the idea that processes are socio-technical systems. Since such systems are not well suited to empirical research, we recognize that the research methods are not as rigorous as would be ideal. The laboratory and pilot studies therefore took an action research approach, attempting to solve practical problems and contribute to new knowledge through change and reflection, and focusing on qualitative, participatory, and iterative research methods3. Thus, encouraging responses from field study subjects—not a belief that the methods were inherently superior—served as the driving force behind the research.

Underlying Principles

Our experience suggests that traditional BPR methodologies—at least in practice—are often task- or technology-focused and ignore the socio-technical nature of processes. These methods therefore fail to effect systemic change. HBPM and the PPP toolset that supports it are founded on four principles that tie them fundamentally to the social and cultural characteristics of business processes. These principles contribute to an atmosphere for reengineering in which process participants do not feel threatened by change, recognize and accept the need for change, and trust in the potential for successful change.

Solution Orientation

When faced with the prospect of change, one position *that* project participants adopt is the need to understand what is wrong with the process, in order to change it. Analyzing the problems of the current process almost invariably leads to some degree of finger pointing and recrimination, which in turn pollutes the project atmosphere with mistrust, lessens cooperation, and stunts the free exchange of ideas.

Solution orientation means to focus on the objectives of the change project and on the progress made toward those objectives. This is not to suggest that we blissfully ignore the problems of the existing process (and for that matter of the project itself). Rather it means that by

3 For an introduction to action research, visit http://ww2.cis.temple.edu/kock/ITP_ISAR/ or http://ousd.k12.ca.us/netday/links/Action_Research/begin_guide_action_research.
clarifying goals, examining past and recent successes, pinpointing strengths, and acknowledging the contributions of even those we might feel justified in blaming, we will create momentum for change, improve relationships among the process owners, and build success into the project.

Reflection

Participants in change projects sometimes become advocates of maintaining the current process. They hold the belief that things are fine as they are, or that any benefits gained through reengineering would not offset the (economic) costs of causing the change. As Krainz said in *Organizational Change*, “reflection processes are essential…[for] organizational change…Systems only gain motivation to change through different forms of self-reflection, because this way they develop an awareness of the need for change and they can stop defending the status quo.”

Reflective methods give process users an opportunity to view the process outside the context of performing the work and instead contemplate the process at the “micro” level (e.g. how they perform the process elements they own) and at the “macro” level (e.g. how they fit into the creation of customer value). Reflection can be a powerful agent to create internal incentives for change.

Participation

“The primary means for achieving joint optimization [of the social and technical aspects of processes] is the participation of users in the design of information systems [or business processes]” (Robey 1996). We generally refer to the process users as the “local experts.” They are the ones who perform the process each day, who have often redesigned the process many times over in their heads. By involving the local experts in process analysis and design, process engineering tap into a vast source of process expertise and create buy-in at each stage of the change project.

Systemic Vision

A systemic approach takes into account all the components of the process and the context in which those components interact. This includes consideration for the socio-technical nature of processes and supporting the human speed of change. Systemic thinking recognizes humans as inextricably linked to process performance. A systemic vision allows our models to more closely represent reality because it includes consideration of the qualitative aspects of process execution, rather than focusing on quantitative or task-oriented data.

Participatory Process Prototyping

The premise of PPP is that, in the same way software prototyping has led to improvements in software development quality and acceptance, certain collections of
participatory methods for process engineering can increase the quality and acceptance of process design.

“In the design of information systems, software prototyping quickly leads to an understanding of the user-driven and task-based requirements (thus bridging the communication gap between user and designer) and to evolutionary implementation.

“Like software prototyping, Process Prototyping is characterized by intensive user involvement with the goals of raising acceptance and enhancing process and product quality. The process prototype, implemented with [the techniques described below] moves through various…design and correction cycles” (Gappmaier 1997).

The elements of PPP are meant to be used in accordance with the goals, resources, and constraints of the particular change project in mind. That is, elements of the methodology should be emphasized or de-emphasized—even omitted in some cases—depending upon the circumstances of a given project. The highly customizable, “situation-based” nature of PPP allows for its application in a wide array of project settings.

Below we describe each of the main components of PPP and their contribution to supporting the underlying philosophies of holistic business process management.

Visioning

Visioning is an iterative method that allows process engineers to understand the long-term strategic and tactical goals and desires of the organization. Many techniques, both formal and informal, can serve as visioning tools. Interviews with executive management regarding the project, formal meetings with multiple levels of management, or informal interactions with managers help build trust between the project engineers and the project sponsors. Visioning should also be performed at the operational level, with local experts. This provides a common understanding of the objectives for a change project, and increases acceptance.

We employ the Metaplan Technique, which is widely used in Europe in other contexts, in a unique way to facilitate visioning. Metaplanning allows project participants to visualize goals, ideas, knowledge, and experience. Participants are asked to write phrases they find relevant to the project on cards, which are placed on a board or wall. The cards are organized into systems of logical objects by clustering, adding, and removing cards. This technique creates a joint awareness of project elements, and prevents discrimination against the ideas of any member of the project team.
Reconnaissance/Analysis

This method was initially developed at XEROX PARC and has been adapted for use as a BPM tool. Reconnaissance/Analysis consists of semi-participatory observation of the work process followed by analysis of the workspace, work objects, work actions, and documents. The object of Reconnaissance/Analysis, as its name suggests, is for the process engineer to become familiar with unknown territory, in this case the process and the work environment. It also helps build trust between the local expert and process engineer.

Apprenticeship Learning

Another XEROX PARC innovation adapted for BPM projects, apprenticeship learning is a special form of participative observation in which local experts train process experts—like an apprentice—in performing the process tasks. Process engineers thus view the process through the eyes of the local experts, and the local experts see their process tasks through the eyes of a trainer. Apprenticeship learning helps bridge the communication gap between process engineers and local experts. Engineers see the strengths and possibilities for improvement in the process firsthand.

Video Analysis

XEROX PARC first introduced video analysis (VA). The application of VA to BPM was developed at JKU. Using video technology, “the activities and interactions of employees in their natural work surroundings is recorded, which can be analyzed under different focal points as often as desirable, and thus allows for a detailed analysis of the current state of the business processes” (Gappmaier, PIA, 2000). The video recordings are reviewed in either Participatory Interaction Analysis Lab sessions (in which project participants and outside experts perform the analysis together) or in Personal Video Analysis sessions (in which the local expert becomes the agent for change by reviewing his own performance and seeking continual improvement).

Picture Card Design Method (PCDM)

This is an original method developed at JKU. Picture cards use symbols to represent process components such as activities, people, resources, and documents. The cards facilitate both the representation of the current process and process redesign. Project participants have the opportunity to arrange, add, remove, and modify the representations according to their experience. The PCDM allows for relatively rapid modeling of current processes in a participatory and self-explanatory way, and catalyzes cooperation among project team members. Additionally, PCDM can be used to effectively port process knowledge into software-based modeling tools.
Process Modeling Tools

Process modeling tools help organizations prepare for the implementation of change. Our unique approach to process modeling is to bridge the communication gap between local experts and implementation specialists (such as programmers and workflow and simulation software specialists) by integrating the syntax and semantics of the target technology solution into process analysis and redesign.

To accomplish this integration, practitioners modify the symbolism of the PCDM while balancing two important considerations: (1) the modifications should reflect the syntactical and semantic norms of the target technology, and (2) local experts, who likely are not also technology experts, should be able to easily interpret the adapted symbol set. In this way, local experts contribute to the whole change process because knowledge gained during the analysis and redesign phases is more fully transmitted to the implementation phase.

Feedback Meetings

The feedback meeting method is based upon the principle of common consent, which emphasizes unity in decision-making and full, open discussion of concerns. All the managers and employees affected by a change project are invited to attend feedback meetings. During the meetings, process engineers (1) present intermediate project results and (2) give and receive feedback from managers and employees. “Thus, deficiencies in the understanding of the present process can be eliminated (leading to better quality) and support for the process-to-be can be generated (leading to better acceptance)” (Gappmaier 1997).

Other Methods

Stakeholder Analysis. During stakeholder analysis, process engineering team members identify stakeholders, assess the stakeholders’ attitudes toward the project, and develop strategies to enable the project to be successful given these attitudes. Because stakeholders’ views toward the project change over time, stakeholder analyses should be conducted regularly throughout change projects.

Yellow pages (Informal Process Characteristics). This method seeks to identify the people in the organization who are subject matter experts and provide solutions when difficulties arise in the process. Often, the organizational chart does not identify these individuals (the “glue” of the system) in their role as solution providers. Sometimes they are even disliked by managers because of hierarchical conflicts. The change team should tap into these local experts, in particular, as resources.

Organizational Health Visioning (O HV). OHV seeks to promote individual and organizational willingness and capability to change through the perception of personal
competence. One study identified six benefits that OHV provides to change projects (Gappmaier, *OHV*, 2000):

1. Enables the participants to agree on goals and make them concrete in a participatory manner.
2. Shows the potential and value of improvements.
3. Lets every participant become conscious of personal competence, strengths and resources.
4. Allows for an emotional and rational perception of the problem solving competence of the participants.
5. Promotes the participants' willingness and capability to perform.
6. Promotes the willingness and capability of organizations to change.

Although these methods are not part of the core set of PPP techniques, they are important alternatives to consider as practitioners evaluate the specific circumstances of a given change project.

Applied hBPM: Case Studies from the Old and New Worlds

The underlying principles of hBPM, coupled with the methods of PPP, are powerful tools for change. PPP methods have been successfully applied in numerous projects in Western Europe since 1996. Until recently, though, no evidence existed to indicate that the methods could yield similar positive results outside Western Europe. Since 2000, we have had the opportunity to participate in several change projects that have employed hBPM philosophies and the PPP method in the United States.

We believe that the successes of these projects indicate that the holistic approach to BPR has broad application across cultural barriers, primarily because it considers universal human needs. The following case studies are representative of the positive project results we have seen in both Europe and the US. (All cited references are to documents from the respective projects made available by the participants and consultants.)

Unisys & Britannic Asset Management

Britannic Asset Management (BAM) is one of the fastest growing fund management firms in the United Kingdom. In 2000, BAM engaged Unisys—the US-based e-business consultancy—to develop an intranet portal to “facilitate easier access to internal documentation and to enable the company’s future objective of introducing a collaborative system.”
As part of this project, Unisys performed a ten-day study to analyze the business processes upon which they would found the portal design. The Unisys team employed many of the holistic methodologies described above, including visioning, stakeholder analysis, feedback meetings, reconnaissance analysis, apprenticeship learning, and the PCDM.

Unisys’ stated goals for the process analysis portion of the engagement were:

1. “To ensure high quality, well-understood process models of the existing processes to ensure a best-fit solution for Britannic Asset Management, and

2. To demonstrate our ability to deliver BPM successfully with a view to help them to understand and improve other manual processes in the future.”

The consultants on the engagement said that, as they read the project requirements, it quickly became obvious to them “that a holistic BPM approach…would add a great deal of value to the success of the Intranet project.” BAM’s Head of e-business did not share their enthusiasm, however. From the outset of the project, he expressed serious doubts about the potential benefits of holistic methods, and agreed to them only under the aegis of a “proof of concept” exercise to evaluate the methods’ usefulness.

On this basis, the consultants proceeded with the project work. They conducted informal visioning sessions with key management stakeholders, performed reconnaissance analysis and apprenticeship learning with the local experts, held feedback meetings on their analysis of the project documentation, and conducted a participatory PCDM session with local experts. The consultants describe the positive project results and valuable insights they gained into the methods as a result of each activity.

We can identify at least two major “take-aways” from the BAM consultants’ project report, which apply to all our project work:

Skepticism is not uncommon, but the methods’ results speak for themselves. We frequently encounter some of the same doubts that BAM’s Head of e-business expressed regarding the value of a holistic approach in our project work. The benefits that holistic methods can deliver, such as increased user acceptance, better communication, internal motivation for change, and process ownership, may seem abstract and un-quantifiable in the minds of many managers from the perspective of efficiency. This is because managers, seeing the investment of time and resources that participatory methods require, often compare those costs with the benefits they have gained from past projects. Given the high failure rate of change projects, it is no wonder that such an investment might seem unattractive.

The cost-benefit analysis becomes much more favorable when managers see the positive results achieved by holistic methods. As the process analysis phase of the BAM project reached completion, the Head of e-business expressed his recognition of the power of the methods. The consultants summed up the experience in these words:
“The most valuable experience was the conversion of the head of e-business. He [never tired of saying] that he only agreed to our BPM consultancy offering to use it as a proof-of-concept, and that he was more than suspicious… We started with the exercise knowing [this]. However, after 5 days working and after having him in the PCDM workshop he was amazed by the power of the methods, saying ‘I was suspicious, but now I am converted!’ In this particular moment we realized how powerful these methods can be.”

Countless participants in change projects have related this same type of “conversion” story.

Skepticism does not exist only at the managerial level. Often, local experts, busy with their duties of performing the process and so often not used to being involved in change, react with suspicion (or at least confusion) to participatory methods. For example, the Unisys consultants noted that

“the [reconnaissance analysis and apprenticeship learning] meeting was in a quite relaxed environment, but we got the strange looks from everyone in the department asking themselves why consultants are coming down to them and what the heck is going on here.”

By the end of the project, though, they had formed close working relationships with the local experts and had developed an accurate model of the process realities.

The PPP methods of support the underlying philosophy of hBPM. A few examples from the Unisys project documents illustrate this point as it relates to participation and reflection.

Participation. “[During PCDM] we finally had them participating in a way that they were discussing between them how the real process looks like.” The local experts (and in this case their managers) played an integral role in creating an accurate model of the process they knew so well.

“[During apprenticeship learning] we finally understood why three paper forms are used for one expense sheet–[they are being used in other parts of the process].” Both process engineers and local experts benefit from participating in process analysis and comprehending individual process components in the context of a whole system.

Reflection. “[Using the PCDM] it was possible to gain common agreement that the expenses process was more complex than the process described earlier in the week.” By visualizing the process, local experts can detach themselves from the process and analyze it more objectively.

“[The PCDM] promoted discussion about how the inputs to the current expenses process may change in the future…. It also promoted discussion between the Finance Manager, the Head of IT, and the Head of e-business.” The methods provide a vehicle for communication and for pondering the implications of process analysis and redesign.
Again, the successes of the Unisys/BAM project are typical of those achieved in dozens of projects in Western Europe through PPP. The question of how these methods would fare outside of that geographical area remained. In 2000, the opportunity arose to find an answer to that question, at least as regarded the United States.

Graduation Evaluation at BYU

Brigham Young University (BYU) is the largest private university in the US, with over 30,000 students enrolled. Graduation evaluation for each student occurs at both the University level (for general education and University requirements) and at the College level (for degree-specific requirements).

Graduate students in the Marriott School of Management were engaged as part of two Information Systems courses to analyze and redesign the graduation evaluation process at both the University and College levels. The content of these graduate courses was hBPM philosophies and methods. Thus, the students principally employed the methods of PPP. The project, which lasted from January to April 2000, had a twofold purpose:

- “To understand the graduation experience of students coming through the different colleges at BYU, and
- To generate new ideas as to how each individual college, as well as the University as a whole, can improve the graduation process”

After the project, a conscious effort was made to collect reactions from the project participants. Below we provide representative excerpts from the surveys, categorized by method application:

Reconnaissance Analysis

“At first I had the feeling [the practitioners] were looking for the bad things in the process, without understanding the process. But as we kept going, their attitude seemed to be more ‘seek first to understand.’ This helped our working relationship and made it easier to disclose information.” (Another example of a conversion story.)

Apprenticeship Learning

“More [of the process engineers] could have done this—only one did. Also, [they] could have spent just a little more time doing this. What took me several weeks to learn they wanted to master in minutes. It helped me remember how much I had to learn.” (Reflection and participation.)
“This process seemed to work best, because they were able to actually walk through and understand what we do.” (Communication of process reality.)

Video Analysis

“We were able to later view the video. This taping made me more aware of the phone calls and interactions I had with students.” (Reflection.)

“After observing [the process] from the outside, I really began to question my role in this process. Although I understand the importance of ‘checks and balances,’ I saw a lot of wasted time…I even questioned [the usefulness of my process tasks].” (Serious and honest reflection.)

“The discussion [of the video] helped bring out new insights and ideas and allowed us to express and clarify our opinions. We were able to see exactly what information [the process engineers] were basing [their conclusions on].” (Reflection and communication.)

PCDM

It is not uncommon for local experts to be unaware of what occurs outside their portion of the process. Through PCDM, one local expert saw for the first time the role of others in the process: “[This method] allowed me to see the whole process laid out. I could really see all that goes into it, especially the advisor’s end of things.” (Communication.)

“Although I don’t think the model was perfect for our purposes, it really did stimulate discussion and caused us to take a detailed look at the entire process.” (Reflection and organizational motivation for change.)

Feedback Meeting

“[The feedback meeting] really helped because we had some outsiders who seemed to really care and understand. Their perspectives helped me see more clearly.” (Reflection and solution orientation.)

“I think we have much better ideas [now] about what to change—or perhaps it’s really that we feel a more innovative spirit as we look for solutions in [the graduation process].” (Reflection and solution orientation.)

General Comments

“Dialogue was started between myself and co-workers, supervisor, and [other advisement centers]. I was able to recognize distractions [inherent in our processes] that hinder my workflow, performance, and customer service.” (Communication and reflection.)
“This project helped us re-evaluate the entire process and re-look at everything with a new perspective. It was very healthy and helpful, and cemented…what is most important [for us].” (Reflection and solution orientation.)

Because of the principle of solution orientation, many project participants also indicated that they had felt genuinely respected during the analysis and design of their business processes. This took some participants by surprise: “[I felt] very respected [during the project] – which was good but very unusual.”

“The [practitioners] made us feel they were genuinely interested in understanding the process and our thoughts, opinions, and feelings, rather than being ‘out to get us’ or making us feel threatened.”

As in the Britannic Asset Management case, these experiences suggest that the subjects in this BPR project embraced change through (1) reflection on the status quo and on the possibility for improvement, (2) active participation in each stage of the change process, and (3) solution orientation, which stemmed from mutual respect and generated confidence in the organization’s ability to change. Additionally, the models produced by the project more closely represented reality because of the reflection of local experts and the iterative communication between them and the process engineers. These better models helped generate higher-quality solutions.

Office of Information Technology at BYU

A few months after undergoing a major organizational restructuring, BYU’s Office of Information Technology (OIT) carried out a BPR project to help improve the quality of customer service at 8-4000, OIT’s Customer Relations Department call center. At the request of BYU executive administration, a project team was formed to identify key processes and opportunities for change, map and analyze the current and redesigned processes, and provide recommendations for improvement to 8-4000.

The team chose to use the PPP methodologies to complete the project. The project report states that the “methodology is an important and appropriate framework for our project activities, allowing us to maximize employee involvement, promote ownership of the recommendations, and enable individuals to manage future change.”

The PPP methods employed during the project included visioning (through management interviews), reconnaissance analysis (with accompanying document analysis), PCDM, process modeling tools, and feedback meetings.

Of particular interest is the team’s situation-based application of the PCDM method. One of the project’s sponsors, BYU’s Chief Information Officer, asked the team to incorporate the answers to six questions in their process model:

1. What happens?
2. When and for how long?
(3) Who is involved? (5) Where does it occur?
(4) What is involved? (6) What can go wrong & why?

In order to incorporate the answers to these questions into the PCDM model, the process engineers made some modifications to the core symbolism of the picture cards. The result was a model that still communicated process components with simplicity and met the requirements of project sponsors. Attention to the project’s goals and resources, and adaptation of the methods used because of project-specific circumstances are critical elements of hBPM, and reflect the systemic vision of the methodologies.

The results of the project included a redesigned customer service model that “increases self-help, decreases cycle time from 2 ½ weeks to less than 2 days, and reduces the amount of personnel time required for this process.” Through participation, local experts were able to “generate potential solutions, gain ownership of process improvement, and develop a unified vision.”

Additionally, after the completion of the project, OIT hired a student employee exclusively to map its processes as continuous improvement became the standard. The participants indicated that they felt empowered to do process improvement in areas this project had not touched. Many of the PPP methods that the project team employed have now become the standard for process innovation at the University level.

Process Mapping and Redesign at Cal Poly

The California Polytechnic State University-San Luis Obispo (Cal Poly) is one of 23 campuses in the California State University System. Over 16,000 students attend Cal Poly. Cal Poly engaged the Hunter Group as a consultant to codify, evaluate, and redesign its academic advisement and curriculum management processes in the context of a pending ERP implementation.

The consultants employed the PCDM to perform process mapping and redesign “because of the appropriateness to the institution of the principles of the methodology such as ‘working toward solutions’ [solution orientation] and because it is easy to learn and facilitates communication through graphic portrayal of processes.”

The project yielded very positive results. The consultants reported that “all redesigned processes, with one exception, showed a dramatic improvement in incorporating the innovative attributes.” The Cal Poly administration embraced the recommendations that resulted from the project, and subsequently implemented them.

The PCDM served as a significant enabler for this project. Another institution considering a redesign project asked the Cal Poly Project Director to express her perspectives on the value of the PCDM. She responded:
“The picture card design method has a visual impact that is simple yet powerful… Traditional flowcharts…can be too technical and confusing for some people… As you move towards implementing a new system, looking for best practices, gaining efficiencies, etc., you don’t want to spend your time and resources ‘formally’ documenting processes as traditional flowcharts do. In other words, you don’t want the flowcharting to be the focus but instead you want people to generally understand what goes on so that a productive discussion can result.”

The consultant’s report identifies “the primary challenge of the project [as] the commitment of time to the project activities.” This common issue results from the resource- and time-intensive nature of participatory methods, and can become a real barrier to change projects. The process engineer must present the client with a vision of the methods’ potential, a conviction of the effectiveness of the methods, and, frankly, a good deal of salesmanship to overcome any inertia caused by this concern. As the methods are applied, the return on the invested time will become apparent.

hBPM: Catalyst for Systemic Change

We believe that the positive outcomes of our projects in the US indicate that the PPP methods transcend—at least to an extent—cultural boundaries. Despite the many political, socio-economic, and cultural resemblances between Western Europe and the United States, significant differences do exist between the two regions with respect to the underlying philosophies of hBPM. For example, Americans generally tend to be innately more solution- and action-oriented than are Europeans. This same solution-orientation, however, causes Americans generally to be less innately reflective than Europeans.

These are precisely the types of cultural differences that we might expect to hinder the application of PPP methods in cultures other than those in which they were developed. Our experience in the United States suggests, however, that the underlying philosophies of hBPM and PPP address universal human needs, and the potential exists for application in a broad array of cultures.

Some of the universal human needs that PPP considers and that make hBPM so powerful include the following:

Foundation of trust. Without trust, human relationships—for the individual, the economy, or the society—are impossible. hBPM, through participation and systemic thinking allows good working relationships to develop among managers, local experts, and process engineers.

Security. Through Organization Health Visioning, project visioning, participation, and reflection, project participants can allay the common fears associated with change initiatives and begin to see the potential for and the benefits of making change a reality. Change management is not performed simply in parallel with process change, but is an integral part of the method.
Validation of individual worth. Participation implies that each individual contributes value to the organization and to the process. By being part of change, and therefore part of something larger than themselves, individuals’ positive perceptions of their own worth are validated. This creates a bond between the individual and the process, generating a sense of ownership.

Communication and understanding. PPP provides iterative, tangible tools to identify and overcome misunderstandings, such as feedback meetings, visioning sessions, and video analysis. By adopting a reflective attitude and a systemic vision, project participants will break down internal and external barriers to true communication.

Conclusions

Holistic and participatory methods contribute greatly to reducing the effects of the most commonly cited reasons for change project failure. Our field experience in Western Europe and the United States suggests that such methods speak to universal human needs and have applicability independent of culture.

Ongoing work at Brigham Young University continues to yield positive results from these method applications. Unisys, the consultancy from the Britannic Asset Management case, has begun to implement the PPP methods as a firm-wide standard for BPR projects.

Naturally, some potential barriers exist to deriving the full benefit of hBPM on a given change project. Basic conditions at the organizational level must exist for PPP to be effective, such as willingness to change, clear goals and objectives, management that does not objectify or exploit the employees, lack of ulterior motives (politics) in the change project. Admittedly, some cultures are perhaps more prone to these ailments than others. However, the astute practitioner will be able to identify these barriers early on and either employ methods suited to overcoming them or else decline to participate in the project.

In the end, holistic methods are a catalyst for unleashing the potential for true, systemic change that exists—often in latency—in every organization. By addressing basic, universal human needs in the context of change, PPP provides a framework of trust, security, belonging, and communication in the dynamic, unstable—but increasingly prevalent—environment of business process reengineering.
Works Consulted

